Somatic Ca2+ transients do not contribute to inspiratory drive in preBötzinger Complex neurons.
نویسندگان
چکیده
PreBötzinger Complex (preBötC) neurons are postulated to underlie respiratory rhythm generation. The inspiratory phase of the respiratory cycle in vitro results from preBötC neurons firing synchronous bursts of action potentials (APs) on top of 10-20 mV, 0.3-0.8 s inspiratory drive potentials. Is the inspiratory drive in individual neurons simply the result of the passive integration of inspiratory-modulated synaptic currents or do active processes modulate these currents? As somatic Ca(2+) is known to increase during inspiration, we hypothesized that it affects inspiratory drive. We combined whole cell recording in an in vitro slice preparation with Ca(2+) microfluorometry to detect single inspiratory neuron somatic Ca(2+) transients with high temporal resolution ( approximately mus). In neurons loaded with either Fluo-4 or Oregon Green BAPTA 5 N, we observed Ca(2+) transients associated with each AP. During inspiration, significant somatic Ca(2+) influx was a direct consequence of activation of voltage-gated Ca(2+) channels by APs. However, when we isolated the inspiratory drive potential in active preBötC neurons (by blocking APs with intracellular QX-314 or by hyperpolarization), we did not detect somatic Ca(2+) transients; yet, the parameters of inspiratory drive were the same with or without APs. We conclude that, in the absence of APs, somatic Ca(2+) transients do not shape the somatic inspiratory drive potential. This suggests that in preBötC neurons, substantial and widespread somatic Ca(2+) influx is a consequence of APs during the inspiratory phase and does not contribute substantively to the inspiratory drive potential. Given evidence that the Ca(2+) buffer BAPTA can significantly reduce inspiratory drive, we hypothesize that dendritic Ca(2+) transients amplify inspiratory-modulated synaptic currents.
منابع مشابه
Inspiratory bursts in the preBötzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice.
Inspiratory neurons of the preBötzinger complex (preBötC) form local excitatory networks and display 10-30 mV transient depolarizations, dubbed inspiratory drive potentials, with superimposed spiking. AMPA receptors are critical for rhythmogenesis under normal conditions in vitro but whether other postsynaptic mechanisms contribute to drive potential generation remains unknown. We examined syna...
متن کاملPharmacology of nicotinic receptors in preBötzinger complex that mediate modulation of respiratory pattern.
Nicotine regulates respiratory pattern by modulating excitatory neurotransmission affecting inspiratory neurons within the preBötzinger Complex (preBötC). The nicotinic acetylcholine receptor (nAChR) subtypes mediating these effects are unknown. Using a medullary slice preparation from neonatal rat, we recorded spontaneous respiratory-related rhythm from the hypoglossal nerve (XIIn) and patch-c...
متن کاملRole of persistent sodium current in mouse preBötzinger Complex neurons and respiratory rhythm generation.
Breathing movements in mammals depend on respiratory neurons in the preBötzinger Complex (preBötC), which comprise a rhythmic network and generate robust bursts that form the basis for inspiration. Persistent Na(+) current (I(NaP)) is widespread in the preBötC and is hypothesized to play a critical role in rhythm generation because of its subthreshold activation and slow inactivation properties...
متن کاملMechanisms underlying regulation of respiratory pattern by nicotine in preBötzinger complex.
Cholinergic neurotransmission plays a role in regulation of respiratory pattern. Nicotine from cigarette smoke affects respiration and is a risk factor for sudden infant death syndrome (SIDS) and sleep-disordered breathing. The cellular and synaptic mechanisms underlying this regulation are not understood. Using a medullary slice preparation from neonatal rat that contains the preBötzinger Comp...
متن کاملDendritic calcium activity precedes inspiratory bursts in preBotzinger complex neurons.
Medullary interneurons of the preBötzinger complex assemble excitatory networks that produce inspiratory-related neural rhythms, but the importance of somatodendritic conductances in rhythm generation is still incompletely understood. Synaptic input may cause Ca(2+) accumulation postsynaptically to evoke a Ca(2+)-activated inward current that contributes to inspiratory burst generation. We meas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of physiology
دوره 586 18 شماره
صفحات -
تاریخ انتشار 2008